Compact-calibres of Regular and Monotonically Normal Spaces

نویسنده

  • DAVID W. MCINTYRE
چکیده

A topological space has calibre ω1 (resp., calibre (ω1,ω)) if every point-countable (resp., point-finite) collection of nonempty open sets is countable. It has compact-calibre ω1 (resp., compact-calibre (ω1,ω)) if, for every family of uncountably many nonempty open sets, there is some compact set which meets uncountably many (resp., infinitely many) of them. It has CCC (resp., DCCC) if every disjoint (resp., discrete) collection of nonempty open sets is countable. The relative strengths of these six conditions are determined for Moore spaces, regular first countable spaces, linearly-ordered spaces, and arbitrary regular spaces. It is shown that the relative strengths for spaces with point-countable bases are the same as those for Moore spaces, and the relative strengths for linearly-ordered spaces are the same as those for arbitrary monotonically normal spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On rarely generalized regular fuzzy continuous functions in fuzzy topological spaces

In this paper, we introduce the concept of rarely generalized regular fuzzy continuous functions in the sense of A.P. Sostak's and Ramadan is introduced. Some interesting properties and characterizations of them are investigated. Also, some applications to fuzzy compact spaces are established.

متن کامل

Order-like structure of monotonically normal spaces

For a compact monotonically normal space X we prove: (1) X has a dense set of points with a well-ordered neighborhood base (and so X is co-absolute with a compact orderable space); (2) each point of X has a well-ordered neighborhood πbase (answering a question of Arhangel’skii); (3) X is hereditarily paracompact iff X has countable tightness. In the process we introduce weak-tightness, a notion...

متن کامل

A note on Volterra and Baire spaces

 In Proposition 2.6 in (G‎. ‎Gruenhage‎, ‎A‎. ‎Lutzer‎, ‎Baire and Volterra spaces‎, ‎textit{Proc‎. ‎Amer‎. ‎Math‎. ‎Soc.} {128} (2000)‎, ‎no‎. ‎10‎, ‎3115--3124) a condition that‎ ‎every point of $D$ is $G_delta$ in $X$ was overlooked‎. ‎So we‎ ‎proved some conditions by which a Baire space is equivalent to a‎ ‎Volterra space‎. ‎In this note we show that if $X$ is a‎ ‎monotonically normal $T_1...

متن کامل

Compact Monotonically Metacompact Spaces Are Metrizable

Monotonically metacompact spaces were recently introduced as an extension of the concept of monotonically compact spaces. In this note we answer a question of Popvassilev, and Bennett, Hart, and Lutzer, by showing that every compact, Hausdorff, monotonically (countably) metacompact space is metrizable. We also show that certain countable spaces fail to be monotonically (countably) metacompact.

متن کامل

Images of the Countable Ordinals

We study spaces that are continuous images of the usual space [0, ω1) of countable ordinals. We begin by showing that if Y is such a space and is T3 then Y has a monotonically normal compactification, and is monotonically normal, locally compact and scattered. Examples show that regularity is needed in these results. We investigate when a regular continuous image of the countable ordinals must ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002